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Mathematics is such a vast and rapidly expanding field of study that there are
inevitably many important and fascinating aspects of the subject which do not find
a place in the curriculum simply because of lack of time, even though they are well
within the grasp cf secondary school students.

Some classes arid many individual students, however, may find time to pursue
mathematical topics of special interest to them. The School Mathematics Study
Group is preparing pamphlets designed to make material for such study readily
accessible. Some of the pamphlets deal with material found in the regular curric-
ulum but in a more extended manner or from a novel point of view. Others deal
with topics not usually found at all in the standard curriculum.

This particular series of pamphlets, the Reprint Series, makes available ex-
pository articles which appeared in a.variety of mathematical periodicals. Even if
the periodicLls were available to all schools, there is convenience in having articles
on one topic collected and reprinted as is done here.

This series was prepared for the Panel on Supplementary Publications by
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The Golden Measure

FOREWORD

Among early Greek mathematicians, the Pythagoreans firmly believed that
virtually everything could be explained in terms of number. Thus they recognized
the relation of number to tone intervals in music. They also insisted that there
was always some law involving numbers which characterized works of art, or the
creations of Man, as well as living forms, or the creations of Nature.

In ...pplying this line of thought the Greeks leaned heavily upon the notion
of a proportion, as in a/b = ad, which they called analogia. Arranging a series
of equal ratios in "harmonious" sequence led to the Greek idea of symmetry. This
is not our modern technical meaning of the word "symmetry" as reflection on
opposite sides of an axis or a plane. Rather, in their own words, symmetry denoted
"the correlation by measurement between the various elements of a plan or pat-
tern, and between each of these elements and the plan as a whole."

One of the best known of these symmetries was the Law of the Golden
Mean, or the Golden Section. We meet this proportion in geometry when we
divide a given line segment into mean and extreme ratio, i.e., into two parts, a
and b, such that a:b = b: (a b). where a<b. Luca Pacioli, a fifteenth-century
Italian mathematician and friend of Leonardo da Vinci, called this the "Divine
Proportion"; the celebrated astronomer Kepler called it "one of the two Jewels
of Geometry."

The reader can easily verify the fact that the "golden number"

618 ;

it is often called (phi ) or T ( tau ) . Also,

a I 0,(iis
2

The Golden Mean appears at many unexpected turns, and as one pursues
the ramifications of the golden measure one quickly comes upon a variety of inter-
est:mg nd curious mathematical relationships involving, for example, the regular
decagon and the r ntagram, Fibonacci numbers, continued fractions, regular
polyhedrons, dynamic symmetry, phyllotaxis, whirling rectangles, and spirals.

Thus in Nature, among many plant and animal forms, we find the Golden
Measure involved in phyllotaxy, or the leaf arrangement on stems; we find pen-
tagonal symmetry in flowers and marine animals; and there is pentadactylism in
vertebrates. Many characteristic measurements of the human body exemplify the
Golden Measure: for example, the length of the hand up to the wrist joint multi-
plied by 1.618 gives the length of the forearm.

Man has also apparently imitated Nature, consciously or otherwise, in many
of his art forms in sculpture, ceramics, painting, and architecture. The use of
dynamic symmetry may be seen in early Greek vases, statues and temples, and in
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some Egyptian pyramids. The use of the Golden Mean is also to be found in exam-
ples of Gothic architecture and in classical Renaissance paintings. In modern
times, some authorities insist that the principles of dynamic symmetry are useful
to printers in the design of books; to advertising men in making their "layouts";
to photographers; in radio design; in the design of reinforced concrete structures;
and, generally, in related visual arts and crafts.

Here, then, is a wonderful new world for you to explore the geometry of
art and of life, as exemplified by the Golden Measure.

4
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The Golden Section
IL F. GRAF.SSER

The division of a line segment into extreme and mean ratio is called the
Golden Section. By this we mean so dividing the segment that the whole segment
shall have the same ratio w its larger part that its larger part has to its smaller part.
In other words, the larger part is the mean proportional between the whole seg-
ment and its smaller part. The Golden Section has some interesting geometric
implications. The same is true if we treat it algebraically. I shall devote about
half of this paper, then, to the mathematical aspects of the Golden Section, but I
shall use only very simple mathematics. In the remainder of the paper I shall try
to explain why it is called the Golden Section. Most of the writers on the Golden
Section have been interested in this latter aspect; i.e., its association with meta-
physics, magic, natural science, and the graphic and plastic arts.

GEOMETRY OF THE GOLDEN SECTION
In our school days we learned a ruler and compass construction for the

Golden Section. I should like to show one of these constructions. Let AB be the

segment to be divided by the Golden Section ( Fig. 1 ). At B erect BC equal and
perpendicular to AB. Let D be the center of AB, and with DC as a radius draw an
arc cutting AB produced in E and F. Then BF laid off on AB gives G. the Golden
Section. To prove this, recall that the perpendicular to the diameter from a point
on the circumference is the mean proportional between the segments of the dia-
meter; that is, EB/ BC= BC/BF. Subtracting unity from both members, we have
(EBBC) I BC = (BCBF ) I BF. Hence, substituting equals, AG I AB
GBI AG, or, inverting, AB/ AG = AG/GB.

If we take AB as the radius of a circle, then AG can be stepped off as a chord
exactly ten times. In other words, AG is the side of an inscribed decagon. In order
to establish this, lay off AG along AB (Fig. 2 ). Draw CG. Then AC / CB =
CB/GB by the Golden Section, and angle I is equal to angle 2 as base angles of
an isosceles triangle. Then AACB is similar to ACGB, and hence angle 3 is
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Fig. 2

equal to angle 4 being corresponding angles of similar triangle& Also, angle 5
equals angle 3 since they are base angles of an isosceles triangle. Hence, the sum
of the angles of ABC is equal to five times angle 3, so that angle 3 is equal to
360. Thus, CB is the side of a regular inscribed decagon.

Return to Figure 1. I wish to state some facts which I shall not take time
to prove. Consider a circle of radius AB. Then BF is the side of a rectangular
inscribed decagon, BC is the radius or also the side of a regular inscribed hexagon,
and CF is the side of a regular inscribed pentagon. From the Pythagorean theorem
we have: Given a circle, the sum of the square of the side of the regular inscribed
decagon and the square of the side of lb, regular inscribed hexagon equals the
square of dm side of the regular inscribed pentagon. This rather pretty theorem
is due to Eudoxus, a contemporary of Plato, in the fourth century before Christ.
Proclus, whose works inform us concerning the history of Greek geometry, says
that Eudoxus "greatly added to the number of the theorems which Plato orig-
inated regarding the section," meaning, of course, the Golden Section. Again, EC
is the side of the regular inscribed star pentagon or pentagram; BF is the Golden
Section of CB; CB is the Golden Section of EB; and finally CF is the Golden
Section of EF.

Later we want to discuss the so-called Golden Rectangle so perhaps I should
define it before leaving geometric considerations. If the sides of a rectangle are
in the ratio of the Golden Section, then we have a Golden Rectangle. Such a
rectangle can be divided into a square and another Golden Rectangle which later
may be again divided into a square and another Golden Rectangle, and so on ad
infinitum. For this reason a Golden Rectangle forms in a sense a complete unit.
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ALGEBRA OF THE GOLDEN SECTION
We now consider the Golden Section algebraically. Let a line be divided in

the Golden Section, and let x be the ratio of the longer segment to the whole line,
the so-called ratio of the Golden Section. If we let the length of the line be unity
when x is the longer segment, then I x is the shorter segment, and 1/x

(1 x), or x x = 1. Solving this equation we find the ratio of the
Golden Section to be x 1/2 ( 1 ± ). Since x is positive, we select the plus
sign, and x = VI.23 0.5 = 0.618, approximately. If we write x' = I x
so that x = VT-1-7-7, and then re lace x in the right member by its value,

73-, we obtain x = V(1 x ). Continuing this process indefi-
nitely we secure the value of x as an infinite radical,

x = V1

The validity of ,his result I shall not stop to prove, but shall present it only as a
formal result. This seems to be the simplest infirite radical obtainable, and it ie
curious that this should give the Golden Section.

Starting again with x' x I , we can write

x (X+ 1)= 1, or = 1 (1 + i).
Replacing the x in the right member by its value, 1/ ( 1 -4- x ), and continuing
this process we obtain

1 + 1
1 +

+

which for convenience we write

1 1 1

1+ 1-4- 1+ .
This is called an infinite continued fraction. Again it is hard to imagine any
simpler such fraction, and it is striking that the simplest infinite continued frac-
tion, like the simplest infinite radical, should give us the Golden Section. If as
a sequence of approximations to this infinite continued fraction we take

1 1 I 1 1 1 1 1 1 1

1. 14 I. 1+ 1+ 1. 1+ 1+ 1+ I.--
and simplify these complex fractions, we obtain 1/1, 1/2, 2/3, 3/5, etc, The
nth fraction may be obtaned by adding unity to the ( n I ) st fraction and taking
its reciprocal. This sequence of fractions is technically known as the successive
convergents of the infinite continued fraction, but 1 am not assuming that my
readers know anything of the theory of continued fractions. Another law of
formation for these convergents is readily seen. Add two consecutive numerators
for the numerator of the next fraction, and do the same with the rwo consecutive
denominators to obtain the next denominator. The sequence of numerators is
the same as the sequence of denominators; viz., 1, 1, 2, 3, 5, 8, 13, . Each
term of the sequence is obtained by adding the two preceding terms. Any term
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divided by the one following gives an approximation to the Golden Section, and
the further out we go the better the approximation. This sequence is well known
and is named for the Italian who is considered by some to be the greatest mathe-
matician of the Middle Ages, Leonardo Fibonacci, sometimes called Leonard
Pisano or Leonardo the Pisan. It is called the Fibonacci series, also sometimes the
Lame series. Among the miscellaneous arithmetical problems in his Liber Abaci,
Fibonacci gives the following: How many pairs of rabtlits can be produced from
a single pair in a year if it is supposed ( 1 ) that every month each pair begets a
new pair which, from the second month on, becomes productive, and (2 ) no
deaths occur? This problem leads to Fibonacci's series. We shall notice this series
further in our applications.

THE GOLDEN SECTION IN HISTORY AND PHILOSOPHY

What we have just been discussing seems to me to be an interesting topic
in elementary mathematics, but there is nothing mysterious nor miraculous about
it. Yet, from time immemorial it has been given an enchantment of mystery. It
has been called the Golden Section, the Golden Mean, the Divine Proportion,
the Divine Section. Perhaps we can now understand a little of the reason for this.
Mankind seems possessed of an innate urge to associate the mystic and the super-
natural with phenomena that he cannot explain. From this urge arises the sig-
nificances attributed to mathematical forms. The belief in such significances
commenced with the ancient Babylonians and Egyptians and became a leading
principle for the explanation of the universe with the members of the Pythagorean
brotherhood.

Pythagoras of Samos is perhaps the most picturesque and interesting figure
in Greek mathematics. He lived in the sixth century B. C. and established at
Crotona, in Magna Grecia, a secret brotherhood, the so-called Pythagoreans,
which became the model of secret societies from that day to this. The Pytha-
goreans persisted as an organization for nearly two centuries. It was a society for
the pursuit of knowledge, for the study of mathematics, philosophy, and science.
The Pythagoreans discovered the Golden Section. Their symbol was the penta-
gram or five-pointed star, whose connection with the Golden Section we have
already seen, for the pentagram cannot be constructed without the use of the
Golden Section. The pentagram is not only a part of the seal of Kappa Mu Epsilon,
but it is also the star in the American flag, the star of the P.E.O. society, of the
Eastern Stars, etc. Shades of Pythagoras!

The Pythagoreans believed that the essence and explanation of the universe
lay in number and form, and that the universe was the incarnation of all wisdom
and beauty. The explanation of beauty was to be found in simple ratios. This idea
was later greatly strengthened by the Pythagoreans' discovery that the harmony
of musical sounds depends upon simple numerical ratios among the vibration
frequencies of the notes. Then what would be more natural than to seek the
explanation of the beauty of proportion and form in simple ratios? What held
for the ear ought also to hold for the eye. The Pythagoreans sought this explana-
tion in the ratio of the Golden Ser:ion, and this has been going on nearly ever
since. The Art Digest published in New York City has had several articles in
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the last few years on the Golden Section. Witness also the books of Mr. Jay
Hambidge, Yale University Press, entitled, Principles of Dynamic Symmetry,
The Parthenon and other Greek Temples and their Dynamic Symmetry, and
Dynamic Symmetry of the Greek Vase. The Golden Section is a special case of
what Mr. Hambidge calls dynamic symmetry.

According to the Pythagoreans, if divine harmony was to be realized on this
imperfect earth then harmonious ratios must exist among earthly things. To find
these harmonious ratios we must seek geometric figures making the impression
of greatest perfection. These are the regular figures. Regular figures are either
plane or solid, and between these two kinds of rekular figures there is a strange
difference. Of the regular plane figures, the regular polygons, there is an infinite
number, while of the regular solid figures, the regular polyhedrons, there are
but five, the so-called Platonic bodies. Plutarch tells us that the Pythagoreans
believed that these five regular polyhedrons were fundamental forms in the
structure of the universe. There were four elements ( instead of 92 ) in the material
world; viz., earth, fire, air, and water. The nature of these elements depended on
their forms. The smallest constituent particle of earth ( its atom ) was hexagonal
or cubical, the atom of fire was a tetrahedron, that of air an octahedron, and that
of water an icosahedron. These polyhedrons are constructed of comparatively
simple figures, the square and the equilateral triangle which are easily obtained.
The first three were known to the Egyptians. The dodecahedron with its twelve
pentagonal faces depending on the Golden Section was much harder to obtain.
When discovered it was taken as the symbol of the supernatural, the heavenly
domain. As it contains the Golden Section, this ratio was supposed to he the
dominating one in the realm of the spirit. And the star pentagram has played
an important role in magic and as a talisman ever since. In various European
regions i: is used as a protection against evil spirits and nightmares. In Goethe's
Faust, the devil, Mephistopheles, is prevented from escaping from Faust's chamber
by a pentagram on the threshold of the door.

We find the Golden Section appearing again with the revival of Platonic
philosophy in the early Renaissance. In the latter half of the fifteenth century
one of the most important European writers on mathematics was Luca Paciola.
Being a monk he was also known as Fra Luca di Borgo. His Sub. a was the first
printed work dealing with arithmetic and algebra. It had a wide circulation and
much influence. Paciola also wrote Divina Proportioac, the first work devoted
entirely to the Golden Section. Paciola found miraculous attributes in the Golden
Section which alone could belong to God. I quote,

"The first is, that this proportion is unique. It is not possible to derive other
proportions or variations from it. According to both theological and philosoph-
ical doctrine this unity is an attribute of God alone. The second divine property
is that of the Holy Trinity. As the Father, Son, and Holy Ghost are one and the
same, likewise must one and the same ratio obtain among the three quantities
no more and no less. The third attribute is that just as God cannot be defined or
made comprehensible to us through words, neither can this ratio be expressed by
a rational number but remains always secreted and hidden and is called hy mathe-
matidans an irrational. Fourthly, as God cannot change and is the same in all his
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parts and the same evt ywhere, so is our proportion always the same and un-
changing be it evident in large or small quantities nor can it be understood in any
other way. The fifth attribute can with justice be added to the preceding; viz., as
God creates divine virtues ( the so-called fifth element) and by means of this
creates the four other elements, earth, water, air, and fire, and by means of these
gives existence to every other thing in nature, so, according to Plato in hisTimaeus,
does our divine proportion give formal existence to Heaven itself, as it gives to
Heaven the form of a dodecahedron which cannot be constructed without our
proportion."

Such metaphysical significance attributed to the Golden Section will meet
with little favor in our modern eyes. It smacks too much of superstition and too
little of science. As H. E. Timerding, a recent German author on the Golden
Section remarks,

"The Golden Section has again and again enticed men to seek the road into
the enchanted land of metaphysics."

THE GOLDEN SECTION IN NATURE

We shall not, however, be engaged with a metaphysical proposition if we
seek to establish the Golden Section as a norm in nature. Let us consider the
subject of phyllotaxy, the system of leaf arrangement in plants. It has been found
that the seemingly innumerable leaf arrangements can be reduced to compara-
tively few oft recurring cases. We have the whorled and the spiral arrangements.
In the former the leaves in a given plane are equally spaced in a whorl or verticil
about the stem or stock. We may think of the spiral arrangement as the result of
displacing the leaves of the whorl vertically. The leaves are then no longer
arranged in a circle but are equally spaced along a so-called genetic spiral or
more properly a cylindrical helix. The spiral or helix winds around the stem of
the plant. In this case one obtair s a fraction representing the leaf arrangement
by wrapping a string about the stem to represent the helix on which the leavc;
are located. Any leaf is numbered O. The others then proceed I, 2, 3, etc., along
the string until a leaf .is reached which is directly above the leaf numbered zero.
Suppose this leaf has the number n. Then n is the denominator of the fraction.
The numerator is given by the number of complete revolutions of the string
between the zeroth and nth leaves. For example, if the leaf numbered 8 is directly
above the zeroth leaf and the string has encircled the stem three times between
the zeroth and the eighth leaves then the fraction expressing the leaf arrangement
is 3/8. Proceeding in this way we find that the two ranked leaves of all grasses,
Indian corn, basswood, and the horizontal branches of the elm and other trees
have the fraction one half. One third belongs to all sedges, alder, birch, white
hellebore; two fifths (a very common ratio ) applies to the willow, rose, drupe
(i.e., plum, cherry, apple, apricot, peach, poplar, almond ); three eighths to
cabbage, asters, hawkweed, holly, plantain; five thirteenths to needles of various
conifers, houseleek, and to mulleins; eight twenty-firsts to the scales of spruce
and fir cones; and thirteen thirty-fourths belongs to scales of cones of the pinus
larice.
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Consider this sequence of fractions, 1/2, 1/3, 2/5, 3/8, 5/13, 8/21, and
13/34. The law of formation is obvious: Add any rwo numerators for the next
numerator; add any two denominators to form the next denominator. Higher
members of the sequence belong to flowers and involucres of the composites,
such as the sunflower and the thistle, and in both leaves and cones of the pine
family.

If the string is wrapped about the stock in the opposite direction ( to left
instead of to the right) then in place of the arrangement quotient m/n one
obtains the arrangement quotient ( n ) /n, or the series 112, 2/3, 3/5,
5/8, 8/13, 13/21, etc. The law of formation for this sequence is the same as
for the former sequence. This latter sequence we have seen converges to the ratio
of the Golden Section. It can easily be shown that the former sequence also con-
verges to the same limit. This regularity of leaf arrangement is sometimes called
Ludwig's Law. It is so striking that it was observed as early as 1834, and it led
to mystical speculations concerning the so-called "spiral tendency of vegetation."
It might be noted also that the great German poet, Goethe, was much fascinated
by this subject.

A German writer, Zeising, about the middle of the last century, has perhaps
the most successfully and consistently supported the Golden Section as a relation-
ship of universal occurrence in natural forms. He says:

"The fundamental principle underlying all forms of Nature and Art
which approach beauty and perfection (Tbtalitiii) is to be found in the
relationship of the Golden Section and the Golden Section has been from
the beginning ( Uranfang) the highest goal and ideal of all forms and ratios,
the cosmic as the individual, the organic as the inorganic, the acoustic as the
optical, but which has been realized most completely in the human figure."

Here are a few occurrences of the Golden Section in the ideal human figure:

1. The division of the stature by the waist line is a Golden Section.
2. The point of the middle finger, when the arms hang naturally, divides

the height in the Golden Section.

3. The well-known rule that the forehead, nose, and lower portion of the
face should be equal can be supplemented by the statement that the lower portion
of the face should be divided by the mouth in the Golden Section.

4. The eyebrows should divide the whole height of the head in a Golden
Section.

Zeising gives other instances of its occurrence in the human form. The title
of his book translated is New Theory of Proportions in the Human Figure,
(Leipzig, 1854 ) .

THE GOLDEN SECTION IN ART

Does the Golden Section give us a division which is pleasing to the eye?
H. E. Timerding (Der Goldene Schnin, Berlin, 1937 ) says that this question is
to be answered with an unconditidnal yes. From time immemorial it has been a
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rule that pictures with pronounced horizons should be divided in a Golden
Section by those horizons. It cannot be said, however, that this rule has been
universally used; it has even been deliberately and intentionally ignored by the
realists of the last century.

The Golden Rectangle has proportions particularly pleasing to the eyc.
This was first tested experimentally by psychologist Fechner in 1876. Fechner's
procedure was to place ten different rectangles before a person, and to ask that
person to choose the rectangle which had for him the most pleasing proportions.
Among a large number of persons, the Golden Rectangle was the one most fre-
quently chosen; it seemed to be the norm about which all the choices clustered.

The ratio 5/8 is one of the convergents approximating the ratio of the
Golden Section. A beautiful example of the use of this approximate value is found
in the division of the height of a certain urn from the Salem cathedral. The urn
consists of a base, bowl, cover, and cover ornament. If the bowl is divided into
eight parts, the base and the cover each measure five such parts and the cover
ornament three parts. Thus, the cover and the bowl are in the ratio of 5/8, while
the cover and the cover ornament together bear a ratio of 8/13 to the bowl and
base together. The ratio 8/13 is the next convergent in the sequence of con-
vergents approaching the ratio of the Golden Section. The effect of these pro-
portions is exceptionally pleasing.

Wherever the requirements of stability or other reasons do not enter, the
modern architect determines the proportions of his buildings from his own
artistic or aestetic sense, and is glad of this freedom. The ancient architect sought
for fixed rules that would eliminate individual judgment. They were looked upon
as incarnations of divine order; to them were ascribed wonder-working powers.
The measurements and proportions of the temples of the Egyptians and Babylo-
nians had sacred significances. Division by the Golden Section was such a rule.
The Golden ratio was used in the façade of the Parthenon and in facades and
floor plans of other Greek temples. A passage from Herodotus leads us to believe
that the Great Pyramid of Gizeh, tomb of Cheops, was constructed with the area
of each face equal to the altitude. Modern measurements confirm this. If it be
true, then the relations between the altitude, slant height, and side of the base
can be expressed with the Golden Section.

The literature of the Golden Section is surprisingly extensive. Literally
dozens of books, pamphlets, and articles have been written about it. It is said to
have other connections which I have not had time to verify, such as a relationship
with the periodic table in chemistry and with the distribution of prime numbers.
So this paper is far from exhaustive, but constitutes merely an introduction to
the subject.
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The Geometry of the Pentagon and the
Golden Section
By H. v. BARAVALLE

The Geometry of the Pentagon has become almost a foster-child besides
other chapters of geometry, as for instance the geometry of the triangles or of the
quadrilaterals. Considering terminologies, we find the whole field of trigonometry
deriving its name from the geometry of triangles and the "quadrature of areas"
( quadratum = square ) from the regular representative of the quadrilaterals, all
units for measuring areas being also squares.

The characteristic elements of the geometry of the pentagon are neither
related to the trigonometric reproduction of forms nor to measuring areas. The
regular pentagon, however, and especially the regular stellar pentagon formed
by its diagonals, the pentagram, are used today in the flags and emblems of the
mightiest nations and had a similar use already two and a half thousand years ago
when the pentagram was the emblem of the Pythagorean School. It is the par-
ticular appeal of the pentagon to the sense of beauty, and the unique variety of
mathematical relationships connected with it which are the characteristics of the
geometry of the pentagon. This gemetry is therefore particularly fit to simulate
mathematical interest and investigations. Outstanding among the mathematical
facts connected with the pentagon are the manifold implications of the irrational
ratio of The Golden Section.

The first figure shows a regular pentagon, and inscribed in it the pentagram
formed by its diagonals. The central area of the pentagram forms against a regular
pentagon in reverse position. In this pentagon another pentagram has been in-
scribed. The total diagram of Figure 1 contains three horizontal lines, among
them the base of the pentagon. Due to symmetry there is a group of three parallel

Fig. 1. Pentagon with inscribed pentagrams.
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lines coordinated in the same way to every one of the five sides of the pentagon.
These parallel lines form between them two types of rhombi, smaller and larger
ones. One of the smaller and one of the larger rhombi is marked in Figure 2 and
Figure 3. A diagonal divides a rhombus into two congruent isosceles triangles.
By folding and bending over the marked rhombus in Figure 2 along its horizon-
tal diagonal we shall always reach exactly the opposite vertex of the central area.
By cutting a pentagram out of paper, then bending over its outer parts and hold-
ing the paper before a light will make the inner pentagram appear in the central
area. Folding the marked rhombus of Figure 3 in the same way along its hori-
zontal diagonal will bring on both ends of this diagonal two angles to coincidence
into which the diagonals divide the interior angles of a regular pentagon. Conse-
quently, a pentagram trisects the interior angles of a circumscribed pentagon. If
one of the partial angles is denoted 0 the angles of the large rhombus of Figure
3 are 20; 30; 20; 30 and those of the small rhombus in Figure 2: 0; 40;

Fig. 2. Smaller rhombus contained in
the peatagon-pentagram diagram.

Fig. 3. Larger rhombus contained in
the pentagon-pentagram diagram.

0; 40. The sum of the angles of any of the two rhombi being 100 (0 ---.--- 360" /10
36" ). All angles which come in the diagrams of the Figures 1-3 are of the

_:zes: 36 ; 72 '; 108; 144 '; 180"; 216 '; 252'; 288 '; 324"; and 360'; thus
forming an arithmetic progression with a difference of 36 .

The line segments in Figure 1, including both the partial segments between
points of intersection and also their sums, are of six different sizes. The largest
are the diagonals of the large pentagon. Counting them as of size No. 1 and then
continuing with numbering until we come to size No. 6 with the sides of the
inmost pentagram, the various sizes appear in the following quantities:

Line segments of size No. 1 come in the diagram 5 times:
Line segments of size No. 2 come in the diagram 15 times:
Line segments of size No. 3 come in the diagram 15 times;
Line segments of size No. 4 come in the diagram 15 times:
LMe segments of size No. 5 come in the diagram 10 times:
Line segments of size No. 6 come in the diagram 5 times:

Total amount of line segments 65

14
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In Figure 4, three isosceles triangles which are contained in the pentagram
are marked through shading. The sides of the largest one are of the sizes 1; 1; 2.
The sides of the middle sized triangle are: 2; 2; 3 and those of the smallest tri-
angle: 3; 3; 4. In the complete diagram of Figure I further triangles of still the
same form are contained which are smaller and have sides of the sizes 5 and 6.
The similarity of all these triangles establishes the following equations of the
ratios of the line segments:

segm I segm 2 segm 3 segm 4 segm 5
segm 2 segm 3 segm 4 segm 5 segm 6

Therefore, the six sizes of line segments are members of a geometric progression.
Whereas the angles in the pentagon-diagram make up an arithmetic progression,
the line segments form a geometric progression. Denoting x as the ratio of this
geometric progression and "a" for the length of a line segment of size 1, we Live:

segment size No. 1 = a
segment size No. 2 = 4X
segment size No. 3 = ax3
segment size No. 4 = ax'
segment size No. xi = axn-1

The value of x can be found through the fact that one line segment of size 3 and
one of size 2 make up a pentagram side of size I. Therefore ax ax a or
x' x = 1. Solving the quadratic for x we get x = V1/4 -1- I. The
positive root is

1 Vg. 1/5--7-1
0.61803398875

2 2 2

which is the number of the Golden Section: G.
The expression G = 1/2 + V1/4 + 1 suggests the construction of a

right triangle with the legs of one-half and of one unit. From its hypotenuse
V1/4 + I we subtract one-half unit and obtain the length of G units. Starting

MNIMINIMININ=16.1=MINI4111.0....161=1M116-11111161.166 ,rni4..,14
WAIN1114101.1114a WS 4,.'.41411=IM

11/ et
6.6 .r6 44/6,ff 6WEINIMIS

- 6 +6 Nr 4 `6111=Mk
6:41. 441PSNIS'' OS

Fig. 4. Similar triangles in a pentagram.

the construction with any given line segment, one obtains the original length
multiplied by the factor G. All the 65 line segments of the diagram in Figure 1
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can thus be obtained from the large pentagram side by repeated application of
the described construction.

Other lengths connected with the pentagram, for instance, the relative
altitudes of its vertices can also be expressed through G. This can be done by
applying the theory of complex roots of an equation and of the complex-number
plane. The geometry of a regular n sided polygon reappears in the nth roots of
unity. For the pentagon, we use a 5th root of unity corresponding to the equation
x 1 = O. One of the roots being I, we get through synthetic division:

1 0 0 0 0-1
1 1 1

1 0

and obtain the quartic equation x + + x + x+ I O. Applying to it the
methods of redprocal equations, we first divide by x= and get:

I
+ x + 1 + + = ".

x x2

Then we regroup:

(x2 + --1 )+ (x + I 0.
x2

Substituting y for x + ( I Ix) and therefore y' for x? + 2 + ( I /x= ) or y' 2 for
x= ( 1 fx2 ) the equation takes on the form y= + y =--- I which is again the
characteristic equation which has G as its positive root. The two roots

Y

-1 -± N/5-

can be expressed through G as

I + N85
G

1 1.5and (G + I).
2 2

The values for x are obtained by solving the equations:

x
1 +

G + =
1 Vc= (1 +G)anti x

2 2

By multiplying the first equation with x we get: x Gx = 1. Its roots are:

x =

By multiplying the second equation with x we get: x + ( I + G )x I and
the roots are

16



M G < I both G14 and ( 1 + G) -/ 4 are smaller than I and consequently all
the four roots are complex. The five roots of the o iginal equation x' 1 = 0 are:

t I4F-Fg '104. 4

441-1-11-

E .r 4 ivri
4G2

/411)

A

Fig. 5. The ratio G in the roots of the equation: x-% 1 = 0.

== 1

V2 4

+ G (1±
2 V 4

+ (;
9

2

The expressions for r, and r4 can be simplified through the relation 1 + G = 1 / G
which derives itself from the fundamental equation x + x = 1 through dividing
it by x:x + 1 = 1/x. As G is its positive root we have G + 1 = 1 / G. Therefore:

1

4G2

6 I

2 4 G7
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The Figure 5 shows the location of the five toots on the complex number
plane. They lie on the circle with the radius of one unit. The abscissae of the five
points are the real parts of the roots:

G + G
; T.; =

and the ordinates the imaginary parts:

1 + G

0;

1

2G

(1 + G Vi .IG2

V1 - (1. +
4

")2
;

4

2

From the abscissae we obtain the ratios of the line segments in a pentagram along
its axis of symmetry to the radius of the circumscribed circle. They are all simple
linear functions of G.

2

I + G 36 I= 6 -

1 1- G 1 G I -EF = I - =---
2 2 2 2

l;

Also the radius of the circle which is inscribed in the pentagon is a simple linear
function of G. The radius equals

G2
18
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Thus the ratios of the segments of the pentagram to the pentagon-sides I
being expressed through G, and the ratios of its segments along an axis of sym-
metry to the radius of the circumscribed circle R being also expressed by G, all
that remains is to tie the two groups together. This will be achieved through find-
ing the ratio between s and R. The answer is contained in the ordinate for rs in
Figure 5. R being the radius of the circumscribed circle, half the side of the
pentagon is

s I , 1 s , 1-2 = 4-6, ix or it- 4 - 4-d

which again expresses itself through G.

The number G is also the ratio of areas which are formed between the
pentagon and the pentagrams. The sequence of areas which is marked in the five
diagrams of Figure 6 constitutes a geometric progression with the ratio G. The

.4\

tZ In 7;;7'

Pig. 6. Areas forming a geometric progression with the ratio G.

ring-shaped area marked in the first diagram ( upper sow left is composed of five
times the area of A I 11E. Taking IIE as the base and diminishing it by multiplying
with G while keeping the altitude of the triangle unchanged, we get A 1141
which is one of the five marked triangles of the second diagram (upper row
middle ). In comparison to A II/II the base of A AEI is again reduced by G
while its altitude remains the same. Five times the triangle AEI equals the marked
triangles of the third diagram. In order to take the next step to the fourth diagram
(lower row left ) we consider again A AEI which is congruent to AAEC. Taking
AC as its base and reducing it by the ratio G to CH without changing the altitude
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we get AKE which is congruent to ACED. By subtracting from the triangle
CED the triangle MK and adding instead the congruent triangle CDF we
obtain the quadrilateral CKDF which taken five times makes up the marked area
of the fourth diagram. This area, therefore, represents the third diagram's area

odh_
maim.

Fig. 7. The ratio G in the regular decagon.

reduced by G. Finally, we take up once more the triangle CED which equals
one-fifth of the marked area of the fourth diagram. Reducing its base CE by the
ratio G without changing the altitude, we obtain the triangle CKD which taken
five times makes up the marked ring-shaped area of the fifth diagram. Denoting
the total marked area of the first diagram with A the marked areas of the successive
diagrams form the geometric progression: A; AG; AG'; AG% AG'. The last
ring-shaped area occupies the same place within the inner pentagram as the first
ring-shaped area in the outer one. The ratio between the two rings is therefore
G' which checks with a previously found result that corresponding sides of the
two pentagons have the ratio G2. The white area left over in the middle of the
last diagram is also G' times the white area in the middle of the first diagram.

The part the ratio G plays in a pentagram also carries over into the domain
of the regular decagon: G is the ratio of the side of a regular decagon to the radius
of its circumscribed circle. Figure 7 shows a regular decagon. Its vertices are joined
with the center and thus the angle of 360' around the center is divided into ten
equal angles of 360. Ten pentagrams can be placed around the center to fit in
these spaces. Every second of them is drawn in Figure 7 and marked through
shading. The sides of these pentagrams equal the radius of the circle circumscribed
about the decagon, and the sides of the pentagons drawn around these pentagrams
equal the decagon side. The ratio between these two sizes is G. The usual con-
struction of the side of a regular decagon to be inscribed in a given circle is an
application of G.

In solid geometry G reappears in the geometry of the pentagondodecahedron
and of the icosahedron which contain pentagons as their faces or as plane sections.
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Fig. 8. The ratio of G in a square inscribed
in a semi-circle.

Fig. 9. The ratio G in a circle inscribed in
an isosceles triangle which is in turn

inscribed in a square.

The ratio G appears furthermore in geometric figures which are not con-
nected with pentagons or decagons. One of them is a square which is inscribed
in a semi-circle ( Figure 8 ). Whereas the three line segments of a pentagram side
have the smaller one in the middle and the larger ones to the sides, we have the
reverse sequence in Figure 8. Nevertheless, the ratio between the two sizes of
segments is again G. To prove it we use the similar triangles BCD and ABD.
Denoting the ratio of the shorter to the longer legs as x we have:

AD= x ,

and therefore BD = CD .x; AD = BD lc = CD As AD + BD = AD -1-
DE = AE and AE = CD we have: CDe CDx = CD or x x = I., the
positive root being G. This result can also be interpreted for solid geometry,
dealing with an equilateral cylinder inscribed in a hemisphere.

Another appearance of G occurs in a circle inscribed in an isosceles triangle
which in turn is inscribed in a square ( Figure 9) or, intepreted by solid geometry,
in a sphere inscribed in a cone which in turn is inscribed in an equilateral cylinder
or in a cube. The three angles in Figure 9 marked as 0 are equal to one another
(one pair are angles on the base of an isosceles triangle and another pair perpen-
dicular angles) therefore; AABE AAED (the triangles have one angle in
common and contain another pair of equal angles 0). Therefore

AB AE
-AEAD

Denoting these ratios as x we have AE = AD .x and AB = AE .x = AD .x2.
Then PADF ARC ( the triangles have both right triangles and have their
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angle at A it common). In the large triangle ADF the ratio of the larger to the
smaller leg is 2; therefore the corresponding ratio in the smaller triangle is also
2 and AE must equal twice the radius of the circle. Therefore, AE = BD. Sub-
stituting AE which is AD -x for BD and AB = AD -x2 for AB into the equation
AB + BD= AD we get ADx' ADx = AD which is again the fundamental
equation x2 x = 1 with the positive root x = G.

G is also the ratio of the smaller leg to the hypotenuse of a right triangle the
sides of which form a geomenic progression. (The right triangle the sides of
which form an arithmetic progression is the Egyptian triangle with the sides
3; 4; 5 ). Denoting the hypotenuse of a right triangle whose sides form a geo-
metric progression as "a" the larger leg is ax and the smaller leg ax2. From the
theorem of Pythagoras we get a' = (ax)" (ax" ) or x' + x = 1 which
gives for x' the positive root G. Therefore the smaller leg of the right triangle
ax2 equals a.G.

Arithmetically the number G shows also outstanding qualities. First, it has the
same infinite sequence of decimals as its reciprocal value: G=0.61803398875 .

1/G = 1.61803398875 . It is the only positive number which forms its recip-
rocal value by adding 1. This results from the equation x' + x = 1 by dividing
it by x: x + 1 = (1/x). Then G can be expressed as the limit of a continued
fraction written only by figures 1.

G =
1

1

By computing this continued fraction step by step, we get the following fractions:

; 1/2; %; 1/4; N3; 13U1; 21,4; 3U5', 4440: 4i4;

The numerators can be obtained by adding the numerators of the two preceeding
fractions, and the same holds good for the denominators. Both the numerators
and the denominators form a Series of Fibonacci:

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; . in which each term is the sum of
the two preceding ones. G is the limit of the ratios of two succcisive terms in the
Series of Fibonacci. This Series starts with two terms of 1. If instead any other
numbers are chosen (excluding zero ) which can be integers or fractions and tbe
same procedure is applied to them G II still appear as the limit of the ratios of
two successive terms. This is shown in : following example in which arbitrarily
the numbers 5 and 24 have been chosen:
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5

24
5 24 = 0.2083

24 29 = 0.8276
.

5 + 24 = 29 29 -+- 53=0.5472
24 + 29= 53 82= 0.6463
29 + 53= 82 82 135 =0.6074
53 + 82 = 135 1354- 217=0.6221
82 + 135 = 217 217-i-- 352=0.6165 ..

135 + 217 = 352 3524- 569=0.6187
217 + 352 = 569 921=0.6178
352 + 569 = 921 921 1490= 0.6181
569 + 921 = 1490 1490 2411 = 0.6180
921 + 1490 = 2411 2411 ± 3901= 0.6180.

1490 + 2411 = 3901

In our case the first four decimals of G are obtained at the llth division.
G can also be expressed as a limit of square roots in which 1 is again the only

figure used:
(; _

+ VI+ VI+ Arl+yi+vi+
( the proofs which follow the theory of limits are here omitted ).

In the history of mathematics references to the number G lead hack to oldest
geometric records. There is a passage in Herodotus in which he relates that the
Egyptian priests had told him that the proportions of the Great Pyramid at Gizeh
were so chosen that the area of a square whose sides is the height of of the Great
Pyramid equals the area of a face triangle. Writing 2b for the side of the base of
the Great Pyramid ( see Figure 10 ) and "a" for the altitude of a face triangle
and "b" for the height of the Pyramid, Herodotus relation is expressed in the
following equation: b2 = (2b a ) /2 = a b. As "a" is the hypotenuse of a right
triangle with the legs "b" and "b" we can apply the theorem of Pythagoras and
get: 42= b' h or h' b". Equating the expressions for LI' in the two
equations we obtain a' b' ah or b= ab = I. Dividing the equation by a'
we have ( h2la2) (b / a) = 1. Substituting x for the ratio b/a we are back at
the equation x2+ x = 1 which has G as its positive root. Therefore, G is the
ratio of half the side of the base square of the Great Pyramid to the altitude of
the face triangle. Checking with the actual measurements taken at the Great
Pyramid, we have:

h= 148.2 m ( reconstructed height of undamaged apex )
b= 116.4 m

which makes
= 1,1148.22 + 116.4' = 188.4

and gives the ratio b a 0.6178 .
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Fig. 10. Construction of the form of the Great Pyramid.

Comparing with G= 0.6180 the difference is 0.0002 .

A further consequence oi the statement of Herodotus is the fact that G also
appears aS the ratio of the base to the lateral area of the Great Pyramid. The sum
of the areas of the four face triangles of the great Pyramid is 4 ( 2b a) /2 = 4ab.
The area of the base is ( 2b ) = 4b2. The ratio of the area is therefore,

4b2 b = ;(4nb
The ratio G can be used to construct the form of the Great Pyramid. In

Figure 10 first the ground plan of the Pyramid has been drawn. It is a square with
its diagonals. Then the elevation is drawn with the positions of the base vertices
determined through vertical lines dropped down from the corresponding points
of the ground plan. What remains to be drawn is the height of the Pyramid. The
altitude of a lateral face is (1/G ) b repeating the construction for G as des-
cribed before using 6 as the base, one obtains b G. Adding b G to b furnishes
b(G+1) =b11G= a. Using "a" as the hypotenuse and b as one leg of a right
triangle, the length of thc second leg is the height of the Pyramid h. Thus the
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elevation can be completed. The third projection (upper right in Figure 10 )
has been obtained from the ground plan and elevation through the methods of
descriptive geometry, (described in THE MATHEMATICS TEACHER, April 1946).

In the sixteenth century ( 1509 ) Paciolo di Borgo wrote his treatise "De
Divina Proportione" (Of the Divine Proportion) on the ratio G. Kepler refers
to it as "sectio divine (divine section ) and Leonardo da Vinci as "sectio aurea"
(the golden section) which is a term still in use for it. In an extensive literature
on The Golden Section, numerous facts have been collected which show its
appearance in farms of nature and art. Hambidge based on it his aesthetic research
on "Dynamic Symmetry." Kepler, whose sense of proportional relations led him
to his three astronomical laws which are the starting point of modern astronomy,
speaks of the properties of G in his "Mysterium Cosmographicum de Admirabile
Proportione Orbium Celestium" as of those of one of the two "great treasures"
of geometry, the second being the Theorem of Pythagoras.
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Moot Mr. Tau
JOHN SATTERLY

1. In calculations made during the study of pentagons, pentagrams and the
two regular solids, the icosahedron and (pentagonal) dodecahedron, a certain
number continually occurs. It has been named 'Tau" and is designated by T.
Its properties are many and curious, as will be seen below.

2. "Tau" is equal to
(1) 2 cos 36° or 1/(2 sin 18°)
(2) (V5+1)/2
(3) The positive root of the equation x2x-1 = 0
(4) The value of

1 +
1 + 1

1 + 1
1 + ad infinitum

or as this is written for brevity

1 1 1

1 + 1+ 1+ 1+ ad infinitum

(5) 1.618033989
(6) The ratio, when n is very large, of the (n-1-1) th term to the nth term

in the celebrated Fibonacci series

0 1 1 2 3 5 8 13 21 34 55

where each number after the second is the sum of the two immediately preceding
numbers.

(7) The ratio of the larger segment of a straight line to the smaller segment
when this line has been divided "In Extreme and Mean Ratio" an operation
sometimes called "The Divine Section" or "The Golden Section." Thus if a line
of length x+ y is divided into two parts x and y so that (x+ y ) /x x/y = r say,
then ( r+1 ) /r=r and r'r-1 = 0 which is the same as (3) above.
3. Note:

On 1. Most Trigonometries prove

cos 36° = ¼ (if +1).

Nig= 2.236080 cos 360 = 0.8090170 = r 2
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Os 3. If x*x-1 = 0 the usual method of solution of a quadratic equation
gives

Therefore

+ 1 ± VT-7f 4x
2

r = 1/2 (i5-+ I).

We may notice here that Since T2T-1 = 0 other equations follow:

(1) 72 = 7 + 1, (2) 1 = 72 --"' 7 and dividing by 7 %ft get 1i7= r I

, I r -
(3) 2 - r = (1 - jr - ID = 1 _ I-- = -1;,-

On 4. Derivation of the Continued fraction expression. We have e = 7+ 1.
Divide by T, we get

, 1

T

Substirute for T in the right hand term and we get

and so on.

On 6. The ratios of any two consecutive numbers in the Fibonacci series are
successive convergents to T. Thus we have

These are alternately > and < T.

The curious may like to know that
10000/9899 = 1.0102030508132134559

but the resemblance to the Fibonacci numbers appears to go no further.
On 7. Rectangles whose sides are in the ratio of T to 1 are said to be of the

shape most pleasing to the eye; test this on the rectangles which you see around
you.

We shall see later how T enters into the shape of and the calcuations with
regard to the Pentagon and its associated plane and solid figures.

4. Mr. Tau and Algebra. Table I shows Integral Powers of 7. To read easily
start at 7° and work down using the all powerful expression 72 =7+1. Then
work up from 7 through its inverse powers.
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TABLE I

T-4=5-5T =(7-3V5)/2=0.1459
7-3=27 -3 =V5-2 =02361 . . .

=(3N5)/2 =03820. .

7-t=7-1
T0=1

=(5-1)/2
=1

=0.6180 ...
=1.0000

Tv=r =(vi+1)/2 =1.6180 ...
T2=T+1 =(3+V5)/2 =2.6180 .. .

=4.2361

T4=37+2 =(7+3N5)/2=6.8541
T3=57+3
e=87+5

Each power of T is the sum of the two immediate expressions above. Note
the occurrence of the Fibonacci numbers.

TABLE II
Products of 7 anti (T + Integers)

72= TT=T4-1
Also 73= r(T+1)=27-1-1

T(T+2)=3T+1
T(T+3)=4T+1

Also ri= (7+1) (7+1)=37+2
(7+1)(7+2)=47+3
(7+1)(7+3)=57+4

Also (7+2)(7+3)=67+7
(7+2)(7+4)=77+9
(7+2)(7+5)=87+11

Also 7(7+1)(7+2)=77+4
(7+1) (7+2) (7+3)=197+13

6. In the act of working out problems on Pentagons, etc., involving expressions
containing T many simplifications may be made if certain identities containing
T are recognized, remembered and used. Table III gives a list.
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TABLE III
Identities Involving r

410'

r+2=rVi. 2r - = 2r+l=r3r=(r 1)/r = (v 1)2= I/r2= 1/(r + 1)
4r+ 3=(T+ 1)(r+2)=0Vg
1/(4r + 3) = (2 r)/ (r + 2) = 0.1056
(3 r) + 2) = 5
(r + 2)43 7) =
V44:+5)(3-0=0+5r=r1g=r+2

+ 3 = 13/251/4 = 3.0777

+ 3)/13 = 0 = 3r +
3 r = virf/r = (r + 2)/(r + I) = (i-s + 1)/r2 :Tx 1.3820
3 r=4 r3=(2 +r)(2--r)

= (51/4)/(72/2) = 1.1756
r zz: (r2/2)/(51/) = 1.376.1

3 r = 5314r31 2= 1.9021
(1 'A) r3)/(2 r) 1/3

7. Answers to problems involving T often look quite different if obtained by
different methods or routes. To guard against this always get rid if possible of
any 7-terM in the denominator by using a relation in Table 111, also reduce the
numerator to terms in the first power of 7 and numerics by using the relations
in Table I. Thus

(10r + 9)1(3 = [(10r + 9) (r + 2)1/5 = (1014 + 29r + 18)15 = (39r + 28)15
(46r + 30)/(r + =1(4tir + 30) (3 7)115 = (62r + 44) /5

1 46r + 30 62r + 44
+ 2 (5 3r) = 75- (34 8r)5

r (17 4r) = 31r + 22

8. Mr. Tom and Trigonometry

The textbooks of Trigonometry give the values of the trigonometrical func-
tions of 360 and 18' in terms of V5. Table IV lists these and gives also the
values in terms of 7.
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TABLE IV

The function In terms of VS

sin 18°

cos 18°

tan 18°

sin 36°

cos 36°

tan 36°

V4( VT-1)

Vili-f
sin 18°

Vali= '27-6

1/4 05+0

m36°
Cos 36°

In terms of T Numerical value

03090

0.9511

0.3249

0.5878

0.8090

0.7265

27

IFTS-
T-1
1,7712

2

2

V3-7-

9. Tam in Geometry

(1) The following ( Fig. la) shows a simple geometrical construction for
the "Divine Section" of a line AB. Make BC= 1/2AB, CD =CB, AE= AD.
Take BC Ls unity, then AC= VT, AD= Vs-1 = AE, and EB=
Therefore

AB/AE= 2/ ( VT-1 ) = 1/2(/3--F1)=7

(a)

(b

and AVEB----=-- (VNI)/ (3-0) -7= 1/2(VTA-1)=T
and AB/ AR= AE/EB.

(2) The Aetthetic Rectangle. ABM' (Fig. lb) is such a rectangle of
sides

AB/AF= (T-4-1 UT, r/l.
E is the "divine section" of AB and AEI ER =r / I. Take the square on AE away
from the rectangle. It leaves the rectangle Ell of sides B11 r and BE 1.
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Therefore rectangle EH is similar to rectangle AH. Take away from rectangle
EH the square of GH, and there is left the rectangle EK of sides BE = 1, BK
7-1 = 1,/r, therefore rectangle EK is similar to the previous rectangles. The
ratios of the respective areas are simple.

Rectangle AH (7+1 )7= 73
_ Square AG;----rXr=r2 .

Rectangle EH = I XT
Square GK = 1X1= 1
Rectangle EK =1 X (r-1 )=1/r

The process of subdivision may be continued indefinitely, also the converse pro-
cess of addition. Defining a gnomon as that figure which added to a given figure
makes a similar figure we see that the squares are gnomons to their respective
rectangles. Fig. 2 shows the rectangles on a larger scale with the process of sub-
division more advanced. If the original rectangle is not true to shape the smaller
figures go far astray. To keep the diagram correct draw the straight lines BF,
EH. These are at right angles to each other and intersect at 0 the limit of the

A E N
1Vt.

%

It .0 lil
.0 I%

.0
.0

.0
/

%

S.
S. - - - I %

N. - I % I
% /

S. o' I t I
."... I A

,... .1 I.
%

... ....
.... ...

-P S.

%. I ,..0
%.0 .... 0-.... 0..00.

Fig. 2

ingrowing squares and rectangles. The intersection of BF and EG gives L the
starting point of the line LK, the intersection of EH with LK gives M the starting
point of MN and so on. If we take an origin at F, axes of x and y along FH, FA
the coordinates of 0 are r3/ r2/ V5. Draw also 04, OG, OK OG is j OA
and to OK, in fact the region around 0 is divided into 8 equal angles of 45°
each. Calculation shows that

2
OA .= (47 + 3), 0 G (7 + 2), 0 = (3 r)

5 5 5

so that OA/ OG =r = OG / OK = Therefore an equiangular spiral may
may be drawn through AGKNPQ having its pole at O. The spiral looks as if
it were tangential to AF at A, FH at G, HB at K, etc., but it is not quite so.

(3) The Itoscele, Triangle of Vertical Angle 36° ( Fig. 3). Let DAB be
such a triangle of base = a. Then DB/ 1/2AB -= 1/sin 18°. .*. DB = ar. Draw
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A Fig. 3
(Side 413 is taken as unity)

BQ bisecting 7 DBA. Then BQ AB= a = DQ, and AQ= a a
(r 1 ) = aIr. This is the "three-isosceles" triangle, and in arca

AABQ: AQBD: QABD::
The PBQD is a gnomon to AABQ for added to QABQ it makes a similar
AADB.

( 4 ) The Pentagon. ABCDE (Fig. 4 ) is a regular pentagon of side AB =
a. 0 is the center of the circumcircle and DOP is ± AB. Then it can be shown that

1 .OP = u f tan 31)° = a AL-- 0.6822a2 2 V5 T

04 = 4-a/sin 36° = a/(0-7-7) = 0.8506a

11)4 = -iaisin 180 = = 1.6180a

v177:3=

-V3 T

1.5388a

1.7204a2.

DP = a V rz =
5Area of pentagon =
3

Fig. 4
(Side AB is taken as unity)
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Also DA, DB divide the area of the pentagon into three areas [IDEA, AEMB,
ADBC whom ratios are

and .rArea of Pentagon vs= 2Aiea of 4/M8

Non. If DP is produced to cut the circle in Q, AQ is the side of a regular
decagon fitting in the circle and AQ = 2R sin 18° = R/T where R = OA. Sub.
stituting for R we find that the side of the decagon

=410 = a/W.7-2* ) = 0.5257a.

( 5 ) The Pentagram ( a so-called mystic figure ). The construction is obvious
(see Fig. 5 ). Let AB -= a. Each star triangle is a mirror image of a triangle in
the pentagon, e.g. 6,AFB is a mirror image in AB of AADB. Slant height of
star triangle, e.g. AF --=

H

/

T3

Fig. 5
(The side AB is taken as unity)

Distance between vertices of two adjacent star triangles, e.g. FG = aT2
Distance from one vertex of a scar triangle to the next but one, e.g.

1:1 = (2r -4- = arl
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Area of star triangle e.g.
MFB = - 3.= 0.7694a=

4

Area of star a ( a3 \ if a- r
Aear of AO Aft 4 V4T--- ilk-T Tml,

(Area of Pentagram) /Area of Pentagon) = "3- -4- 1 =-- 2T.
(6) The lcojahedron. The surface of the regular icosahedron (Fig. 6a)

consists of twenty equal equilateral triangles. If edge --= a

Radius of circunisphere = 1/2 5i/4012 a = 0.951a

Radius of sphere through midpoints of edges = ViTa = 0.8090a

Radius of insaihed sphere = ?la = 0.755a

The Volume = %,r2a3 = 2.1817a3

(a) (b)
Fig. 6a Fig. 6b

(7 ) The Dodecahedron. The surface of the regular (pentagonal ) dodeca-
hedron (Fig. 6b ) consists of twelve equal regular pentagons.

The radii corresponding to the descriptions above are

Nif2ra = 1.401a 1,4r2a = 1.309a,

respectively.

The Volume 1/451/3'40 = 7.665a3

1.114a

The proofs of the above results are not beyond a student's capabilities but they
are long.
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10. Mr. Taris Relations. We have seen that if we start with the numbers 0, 1, 1
and add (the last ) two at a time we get the Fibonacci numbers and the ratio of
rwo consecutive numbers converges to 1.6180 , i.e. to T, and r is one root of
the equation x2xI 0. If we take any two numbers at the start and add two
at a time the ratio of two consecutive numbers also converges upon 1.618 .

For example starting with 1.5 we get

1 5 6 11 17 28 45 73 118.
A Fibonaccian will show that this series is the sum of

1 (1 1 2 3 5 8 13 21)
and

4 .x (0 1 1 2 3 5 8 13)
and this is true ( with a different numeric from 4 ) for all such setes so that
we still are linktid to the Fibonacci series. If we start with any three numbers
and add three nutni,ns at a time we get a series having a convergent ratio of
1.839286 and this is a root of x'x2x-1 0. Similarly starting with four
numbers and five numbers as shown in the table below (Table V).

TABLE V
Fibonacci and Post-Fibonacci Series

Start with Add
Convergent

Ratio
A Root of the

Equation

Any two numbers
Any three numbers
Any four numbers
Any five numbers
Any no. of numbers

Two at a time
Three at a time
Four at a time
Five at a time
All st a time

r=1.618 .
1.839 .

1.927 .

1.965

2.000

xs-x2-x---1=0

Any two numbers

Any two numbers

Any two numbers

3Xlast-1-2Xlast 3.56
but one

3X1ast-2><Last 2.00
but one

2 Xlast+3Xlast 3.00
but one

x2-3x---2=0

e-3x+2=0

x2-2x-3=0

Variants are shown in the lower part of the table but we must stop here.
Useful referenc, books are Sir D'Arcy W. Thompson's "Growth and Form"
( Cambridge, University Press and Macmillan Company, New York ) 2nd edition,
1942, Chs. XI, XIV and H. M. Cundy and A. P. Rollett, "Mathematkal Models"
(Clarendon Press, Oxford ), 1942, Ch. II, but other references are available e.g.
H. S. M. Coxeter, "The Golden Section, Phyllotaxis and Wythoff's Game"
(Scripta Marbernatica, New York ) Vol. XIX, Nos. 2-3. 1953.

"Good bye, Mr. Tau, we have enjoyed our meeting."
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The Golden Section, Phyllotaxis, and
Wythoff's Game
By H. S. M. COXETER

Geometry has two great treasures: one is the Theorem of Pythagoras; the other,
the division of a line into extreme and mean ratio. The first we may compare to
a measure of gold; the second we may name a precious jewel.

.10EPLEit ( 1571-1630)

1. The odd-sounding phrase "division of a line into extreme and mean
ratio" was used by Euclid to signify division of a line segment into two unequal
parts such that the ratio of the whole to the larger part is equal to the ratio of
the larger to the smaller. Calling each ratio r (after Tota), "the section"), we
see that this requires

= 1,
so that T is the positive root of the equation

x2x-1 = 0,

1

VIZ.,

whence

Fig. 2

T= 1/2(.1(T-1-1) = 1.618033989-,

(V5----1),

The classical construction (Euclid II, 11 ) is as follows. To divide a given
segment AB in extreme and mean ratio ( Fig. 1 ) ), let E be the mid-point of the
side AC of the square ABDC; rake F on CA produced, so that EF = EB; rake P
on AB, so that AP =-AF. Then P is the dividing point (such that AB X PB
AP2).
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Nils Pipping [IQ has recently devised a new construction, in the spirit of
Mascheroni and Mohr 111, 12/, who proved that every ruler-and-compasses
construction can be duplicated with the compasses alone. Pipping's division of
the given segment AB requires just seven circles, of three different radii, as in
Fig. 2. The circle A (AB) (with center A and radius AB) meets the equal circle
B (AB) in two points I and K. Then 1 (1K) determines L, B(JK) determines
M and N,L(JK) determines 0, and finally the two circles M (AO) and N ( ))
intersect in a point P which divides AB in extreme and mean ratio (as can easily
be verified by several applications of Pythagoras's Theorem ).

It is interesting to compare this wit? M ..roni's third solution to the
problem of locating the mid-point of a given segment '11, Problem 661, which
likewise requires seven circles.

The division into extreme and mean ratio, later known as the golden section,
was used by Euclid ( IV, 10 ) "to construct an isosceles triangle having each
of the angles at the base double of the remaining one" and (IV, 11 ) "in a given
circle to inscribe an equilateral and equiangular pentagon." The figure that he
obtained is essentially a regular pentagon with its inscribed star pentagon or
pentagram. This can be displayed by tying a simple knot in a long strip of paper
and carefully pressing it flat. In modern notation, the connection between T and
the pentagon is expressed by the formula

7 ------- 2 cos
5

Euclid's construction for the pentagon is one of the thirteen properties of
T described by Fra Luca Pacioli in his book, Divina proportione (131 which
was illustrated by his friend Leonardo da Vinci. Successive chapters are entitled:
The First Considerable Effect; The Second Essential Effect; The Third Singular
Effect; The Fourth Ineffable Effect; The Fifth Admirable Effect; The Sixth
Inexpressible Effect, and so on. "The Seventh Inestimable Effect" is that a regular
decagon of side I has circumradius T. ( We can thus inscribe a pentagon in a
given circle by first inscribing a decagon and then picking out alternate vertices.)
"The Ninth Most Excellent Effect" is that two crossing diagonals of a regular
pentagon divide one another in extreme and mean ratio. "The Twelfth Incom-
parable Effect" and "The Thirteenth Most Distinguished Effect" are construc-
tions for the icosahedron and the dodecahedron. The next chapter tells "how,
for the sake of our salvation, this list of effects must end" ( because there were
just thirteen at table at the Last Supper ).

The faces surrounding a corner of the icosahedron belong to a pyramid
whose base is a regular pentagon. Any two opposite edges belong to a rectangle
whose longer sides are diagonals of such pentagons. Since the diagonal of a
pentagon is T tiMCS its side, this rectangle is a golden rectangle, whose sides are
in the ratio 7:1. In fact, the twelve vertices of the icosahedron ( Fig. 3 ) are the
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twelve vertices of three golden recungles perpetldindar planes (Mg. 4).

pis. 3

tbordinates
Thus (16) the vertices of an icosahedron of edge 2 can be reprftented by the

10
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shows that the golden rectangle can be dissected into two pieces: a square and
a smaller golden rectangle. Given the square ABDC, we can construct the side
CF of the rectangle by Euclid's method (Fig. 1). From the smaller rectangle
ABGF (Fig. 5 ) we can cut off another square, leaving a still smaller rectangle,
and continue the process indefinitely. Quadrants of circles, inscribed in the suc-
cessive squares, form a composite spiral of rather agreeable appearance. More
interestingly, the end points D, A, H, 1, . . . of the quadrants lie on a true
logarithmic spiral whose pole is the point, of intersection CG.BF.

Fig. 5

It was pointed out by Cundy and Rol lett [5) that this spiral cuts each of
the lines CF, FG, GB, BP, . . . twice, instead of touching them like the circular
quadrants. In fact, its angle 0 (between tangent and radius vector) satisfies the
equation Tr cot 0. 2 log r, so that cb = 72 58'. But our eyes can scarcely
distinguish it from the logarithmic spiral of angle 74' 39' (satisfying cot cb =
V3 log tan 0) which, being its own evolute, has the same contact properties as
the composite spiral of Fig. 5. Of course, the rectangle is no longer golden; in
fact, the ratio of its sides is not

T 7-- 1.6180 ...
but

tan' 40 1.5387 ...
We leave it to the psychologists to decide which of these two rectangular shapes
is the more aesthetically satisfying [6).

In 1202, Leonardo of Pisa, nicknamed Fibonacci (not "son of an ass," as
has been suggested, but rather "son of good nature" or "prosperity"), came
across his celebrated sequence of integers in connection with the breeding of
rabbits [1, 9). He assumed that rabbits live forever, and that every month each
pair begets a new pair which becomes productive at the age of two months. In
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the first month the experiment begins witha newborn pair of rabbits. In the second
month, there Is still just one pair. In the third month there are two; in the fourth,
three; in the fifth, five; and so on. Let f denote the number of pairs of rabbits
in the nth month. The first few values may be tabulated as follows:

it: 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 5 8 13 21 34 55 89 144

Four centuries later, Girard [7) noticed that each of these numbers (after
the second) is equal to the sum of the preceding two:

= f3= f..3= f.,3-1-1 (ii?1).

Another hundred years passed before Simson [17) observed that
is the nth convergent to the continued fraction

1 1 1
1 + 1 + 1 + 1 +

To see that this converges to T, he merely had to express the relation T = 1+1 /1-
in the form

1 1 1 1 1 1-
-1--- -1: I + 14: 1 +-1:

Simson also obtained the identity

1.4..1 . =(-1)71.

which yields the following puzzle-dissection [15). A rectangle f. 1Xf.., is cut
into four pieces which can apparently be reassembled to form a square of side
f. (Fig. 6 ). The figure should be drawn on squared paper, so that the audience

fn fn-

Fig. 6

f n

can "see" that there is no cheating. The value n = 6 is sufficient in practice, but
of course the error is still less detectable when n = 7.

Lagrange [8) noticed that the residues of the Fibonacci numbers, for any
given modulus, are periodic; e.g., their final digits (in the denary scale ) repeat
after a cycle of sixty:

1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, ..., 7, 2, 9, 1, O.
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In 1876, Lucas obtained the identities

= 11. = P..1+ P. 13.-p
1+1+2+3+

More interestingly (10), he discovered the explicit formula in terms of binomial
coefficients:

(n
k 2

)

which can be established by observing that

1 + e + 2t2+ St + f11+1P+ = (1 t

1 + (t + i2)+ (t + far + (f + tzy + .

Setting t = 0.01, we obtain the decimal

1.0102030508132134559
9899

( which is spoilt by the necessary "carrying" after the nineteenth significant digit )
Lucas also observed that the recursion formula

1.42 = 1..1 + 1$

is satisfied by any linear combination of the nth powers of the roots of the
equation

whence, in virtue of the initial conditions fu= 0,f1 = I,

-X(1 +2)" I -21)"1
= 5""2 T" (-T)" 1^

It follows chat

where
= 1/2(f ,,r5-+ g,),

g. f. + in,,.

2. The Fibonacci numbers arise naturally in the botanical phenomenon
called pbyllotaxii (191 In some trees, such as the elm and lime, the leaves
along a twig appear alternately on two opposite sides, and we speak of "1/2
phyllotaxis." In others, such as the beech and hazel, the passage from one leaf to
the next, involves a screw-twist through one-third of a turn, and we speak of
"1/3 phyllotaxis." Similarly, the oak and cherry exhibit 2/5 phyllotaxis; the
poplar and pear, 3/8; the willow and almond, 5/13; and so on. We recognize
the fractions as being quotients of alternate Fibonacci numbers. But consecutive
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Fibonacci numbers could be used just as well; e.g., a clockwise rotation through
5/8 of a turn is equivalent to a counterclockwise rotation through 3/8.

Another manifestation of phyllotaxis is the arrangement of the florets of
a sunflower, or of the scales of a pine cone, in spiral or helical whorls. We observe
that the numbers of right-handed and left-handed whorls are two consecutive
Fibonacci numbers, viz., 2 and 3 (or vice versa) for the balsam cone, 3 and 5
for the hemlock cone, 5 and 8 for the pine cone, 8 and 13 for the pineapple (the
clearest instance of all ) and higher numbers for sunflowers of various degrees
of cultivation. Church (4) gives photographs of a ( 34, 55 ) sunflower and of
a giant (55, 89 ) sunflower. The Russians are said to have succeeded in cultivating
a super-giant ( 89, 144 ).

Fig. 7

The fact that the numbers of whorls can be increased by intensive cultiva-
tion suggests an evolutionary explanation for the phenomenon. We can imagine
that a simple ( 1, 1 ) plant evolved into a (1. ) plant, then into a (2, 3) plant,
and so on. The transition can be explained by observing that the florets are not
really quadrangular but hexagonal, so that each belongs not only to two kinds
of whorl but to a third as well. A slight distortion suffices to make the third kind
supersede one of the others. In Fig. 7, a pineapple has been Lketched between
two hypothetical variants; a simpler fruit, exhibiting (5, 8 ) phyllotaxis; out
of which the pineapple could have evolved, and a super-pineapple, exhibiting
unquestionable ( 8, 13 ) phyllotaxis, which might be produced by intensive
cultivation. The scales of the pineapple have been numbered systematically with
the multiples of 5 and 8 in the directions in which 5 or 8 whorls orcur. The
remaining numbers then follow by "vector addition," e.g., we have the multiples
of 5 -I- 8 --, 13 in the intermediate direction, in which there are 13 whorls. Thus
the numbers in any whorl form an arithmetical progression. The same kind of
numbering could be applied to the florets of a sunflower.

Such an explanation for phyllotaxis was first given by Tait (18). According
to Dr. A. M. Turing who is preparing a new monograph on this subject). the
continuous advance from one pair of parastichy numbers to another, such as
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(5, 8) to (8, 13), takes place during the growth of a single plant, and may or
may not bt combined with an evolutionary development.

3. Another application of the golden section is to the theory of Wythoff's
game [20]. Like the well-known Nim (2), this is a game for two players,
playing alternately. Two heaps of counters are placed on a table, the number in
each heap being arbitrary. A player either removes from one of the heaps an
arbitrary number of counters or removes from both heaps an equal number (e.g.,
heaps of 1 and 2 can be reduced to 0 and 2, or 1 and 1, or 1 and 0, or 0 and 1 ).
A player wins by taking the last counter or counters.

An experienced player, player against a novice, can nearly always win by
remembering which pair of numbers are "safe combinations": safe for him to
leave on the table with the knowledge that, if he does not make any mistake
later on, he is sure to win. ( If both players know the safe combinations, the
outcome depends on whether the initial heaps form a safe or unsafe combination. )

The safe con. hinat;ons
(1,2), (3,5), 4,7), (6,10),(8,13), (9,15), (11, 18),...

can be written down successively by the following rule. At each stage, the smaller
number is the smallest natural number not already used, and the larger is chosen
so that the difference of the numbers in the nth pair is n. Thus every natural
number appears exactly once as a member of a pair, and exactly once as a
difference. It follows that, if player A leaves a safe combination, B cannot help
changing it into an unsafe combination ( unsafe for B ). It is slightly harder to
see that any such unsafe combination left by B mil be rendered safe by A. Suppose
B leaves the pair (p. q) ( p <q) which is not one of the safe combinations. If
p = q, A wins immediately. If not, let ( p,p' ) or (p' , p ) be the safe combination
to which p belongs. If p <q, A reduces the q heap to p'. If q <p' (so that
p<q<p' and qp<p'p), hc reduces both heaps by equal amounts, so as to
leave the safe combination whose difference is qp.

Thus A can win, no matter what B does, unless A is confronted with a safe
combination before his first move ( in which case he will remove one counter and
trust B to make a mistake ) .

It is easier to write down a lot of safe combinations than to discover a gen-
eral formula. Such a formula was given by Wythoff's "out of a hat"; but a more
natural approach is provided by the following theorem of Beatty [3):

If x '-f-y 1, where x and y are positive irrational numbers, then the
fequenCes

12x1, 134 .. lyb 12y1,13y1.

together include every positive integer just once.
( Here (x) means the integral part of x. )
The following proof was devised jointly by J. Hyslop in Glasgow and A.

Ostrowski in Gottingen.
For a given integer N, the numbers of members less than N of the

sequences
x, 2x, 3x, and y, 2y, 3y, .



are, respectively, (Nix) and (Niy). Since 1, where x and y are
irrational, Nix and N/y are two irrational numbers whose sum is the integer
N. Hence their fractional parts must add up to exactly 1, and

[Nix] (N /y)=-N-1.
This is the number of members less than N of the two sequences together. By
taking N 1, 2, 3, . . in turn, we deduce that the multiples of x and y are
evenly" distributed among the natural numbers: one between 1 and 2, one

between 2 and 3, and so on. Hence their integral parts, (nx) and (ny), are the
natural numbers themselves.

This is one of the two requirements for the safe combinitions in Wythoff's
game. The other, that the difference shall be n, is secured by taking

y x+ 1.
since x y =_ , it follows that

0,
whence x T, y = T', and the nth safe combination is

[we).
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FOR FURTHER READING AND STUDY

There is an embarassment of riches when we look to the literature of The
Golden Section, including the related topics of Fibonacci numbers, continued
fractions, the geometry of the pentagon, dynamic symmetry, phyllotaxy, and
other interesting sidelights. The bibliography below is but a very small part of
this storehouse of ideas.
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